metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{1-[bis(2-aminoethyl)amino]propan-2-ol}nickel(II) bis(perchlorate)

Bao-Hua Qian,^{a,b} Zhen-Ming Zhang,^b Lu-De Lu,^a* Xu-Jie Yang^a and Xin Wang^a

^aMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China, and ^bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China

Correspondence e-mail: Ildnju@yahoo.com.cn

Received 11 October 2007; accepted 14 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.056; wR factor = 0.167; data-to-parameter ratio = 16.2.

In the title compound, $[Ni(C_7H_{19}N_3O)_2](ClO_4)_2$, the Ni atom, which is located on an inversion center, is hexacoordinated by six N atoms from two ligands, forming a distorted octahedron. The complex molecules are linked by $N-H\cdots O$ hydrogen bonding, forming a one-dimensional chain structure along the *a* axis, which is further hydrogen bonded with the perchlorate anion to form a three-dimensional framework. One $-CH_2 CH_2-$ group is disordered over two positions; the site occupancy factors are *ca*. 0.6 and 0.4.

Related literature

For related literature, see: Huang *et al.* (2004); Li *et al.* (2002); Xia *et al.* (2001).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C_7H_{19}N_3O})_2](\mathrm{CIO_4})_2 \\ & M_r = 580.11 \\ & \mathrm{Monoclinic}, \ P_{2_1}/n \\ & a = 7.915 \ (3) \ \text{\AA} \\ & b = 17.243 \ (6) \ \text{\AA} \\ & c = 9.127 \ (3) \ \text{\AA} \\ & \beta = 106.442 \ (4)^\circ \end{split}$$

 $V = 1194.6 (7) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.10 \text{ mm}^{-1}$ T = 298 (2) K $0.62 \times 0.54 \times 0.18 \text{ mm}$

Data collection

Bruker SMART 1000

diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.550, T_{\max} = 0.827$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 14 restraints $wR(F^2) = 0.167$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.94$ e Å⁻³2796 reflections $\Delta \rho_{min} = -0.62$ e Å⁻³173 parameters $\Delta \rho_{min} = -0.62$ e Å⁻³

 Table 1

 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N2-H2A\cdots O4$ 0.90 2.42 3.293 (6) 164 $N2-H2A\cdots O3$ 0.90 2.69 3.416 (6) 139 $N2-H2B\cdots O1^{i}$ 0.90 2.31 3.067 (4) 141					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 H1 O2^{II} O82 236 3043(6) 142$	$N2-H2A\cdots O4$ $N2-H2A\cdots O3$ $N2-H2B\cdots O1^{i}$ $D1-H1\cdots O2^{ii}$	0.90 0.90 0.90 0.82	2.42 2.69 2.31 2.36	3.293 (6) 3.416 (6) 3.067 (4) 3.043 (6)	164 139 141 142

7286 measured reflections

 $R_{\rm int} = 0.044$

2796 independent reflections

2060 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (grant Nos. 505720319), and the Natural Science Foundation of Jiangsu Province (grant Nos. BK2005130).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2243).

References

- Bruker (1997). SMART (Version 5.059), SAINT (Version 6.02a) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak
- Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Huang, J., Li, S. A., Li, D. F., Yang, D. X., Sun, W. Y. & Tang, W. X. (2004). Eur. J. Inorg. Chem. pp. 1894–1901.
- Li, S. A., Xia, J., Yang, D. X., Xu, Y., Li, D. F., Wu, M. F. & Tang, W. X. (2002). *Inorg. Chem.* **41**, 1807–1815.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Xia, J., Xu, Y., Li, S. A., Sun, W. Y., Yu, K. B. & Tang, W. X. (2001). *Inorg. Chem.* **40**, 2394–2401.

supplementary materials

Acta Cryst. (2007). E63, m2754 [doi:10.1107/81600536807050386]

Bis{1-[bis(2-aminoethyl)amino]propan-2-ol}nickel(II) bis(perchlorate)

B.-H. Qian, Z.-M. Zhang, L.-D. Lu, X.-J. Yang and X. Wang

Comment

Transition-metal polyamine complexes with hydroxypropyl pendant group play important roles in hydrolytic metalloenzymes (Xia *et al.*,2001;Huang *et al.*,2004). The syntheses of such complexes acting as model compounds for hydrolytic metalloenzymes have attracted much attention (Li *et al.*,2002). In present work, we report the syntheses and the crystal structure of the title compound, $[Ni(C_7H_{19}N_3O)_2](CIO_4)_2$,(I).

The Ni(II) located on an inversion center, is coordinated octahedrally by six N-atoms from the two ligands, forming a centrosymmetric distorted octahedral geometry. The bond lengths of Ni—N1, Ni—N2 and Ni—N3 are 2.170 (4), 2.128 (4) and 2.146 (3) Å., respectively.

One of the H atom attached to N2 is engaged in intermolecular hydrogen bonds with O1 (Table 1). These intermolecular hydrogen bonds result in the formation of one-dimensional chain structure along the *a* axis (Fig.2). The chains are further interconnected by the perchlorate anions through O—H…O and N—H…O hydrogen bonds to form a three-dimensional network.

Experimental

To a stirred solution of nickel perchlorate hexahydrate (Ni(ClO)₄· $6H_2O$,0.366 g, 1.0 mmol) in methanol (20 ml), 1-[bis(aminoethyl)amino]-2-propanol (C₇H₁₉N₃O, 0.16 g, 1.0 mmol) in methanol (10 ml) was dropwise added in 10 min, then the solution was refluxed for 30 min. The green crystals of (I) suitable for X-ray diffraction were obtained after 3 days.

Refinement

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene), 0.96Å (methyl), 0.90Å (NH₂) and 0.82Å (OH) with $U_{iso}(H) = 1.2U_{eq}(CH_2, NH_2 \text{ or OH})$ and $U_{iso}(H) = 1.5U_{eq}(CH_3)$.

One of the CH_2 — CH_2 group is disordered over two positions in an approximately 0.6/0.4 ratio This disorder was treated using the tools available in *SHELXL97* (Sheldrick, 1997).

Figures

Fig. 1. Molecular structure showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the CH_2 — CH_2 group is shown. Hydrogen atoms have been ommited for clarity except the one showing some hydrogen bonds with the ClO₄ anion. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]

Fig. 2. Partial packing view of (I) showing the hydrogen bonding interactions. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been ommited for clarity [Symmetry codes: (iii) -x + 1, -y + 1, -z + 2; (ii) x + 1, y, z]

Bis{1-[bis(2-aminoethyl)amino]propan-2-ol}nickel(II) bis(perchlorate)

Crystal data	
[Ni(C7H19N3O)2](ClO4)2	$F_{000} = 612$
$M_r = 580.11$	$D_{\rm x} = 1.613 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2626 reflections
<i>a</i> = 7.915 (3) Å	$\theta = 2.4 - 26.9^{\circ}$
<i>b</i> = 17.243 (6) Å	$\mu = 1.10 \text{ mm}^{-1}$
c = 9.127 (3) Å	T = 298 (2) K
$\beta = 106.442 \ (4)^{\circ}$	Prism, green
$V = 1194.6 (7) \text{ Å}^3$	$0.62\times0.54\times0.18~mm$
Z = 2	

Data collection

Bruker SMART 1000 diffractometer	2796 independent reflections
Radiation source: fine-focus sealed tube	2060 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 298(2) K	$\theta_{\text{max}} = 28.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 6$
$T_{\min} = 0.550, \ T_{\max} = 0.827$	$k = -22 \rightarrow 22$
7286 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.0867P)^2 + 1.1111P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2796 reflections	$\Delta \rho_{max} = 0.94 \text{ e} \text{ Å}^{-3}$
173 parameters	$\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

14 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni1	0.5000	0.5000	0.5000	0.0300 (2)	
N1	0.3581 (4)	0.55710 (18)	0.6413 (4)	0.0408 (7)	
C1A	0.4904 (17)	0.5660 (10)	0.7986 (16)	0.081 (7)	0.38
H1A1	0.4534	0.6075	0.8541	0.097*	0.38
H1A2	0.4951	0.5184	0.8563	0.097*	0.38
C2A	0.6715 (14)	0.5839 (7)	0.7814 (15)	0.042 (3)	0.38
H2A1	0.6690	0.6319	0.7255	0.051*	0.38
H2A2	0.7568	0.5890	0.8809	0.051*	0.38
N2	0.7189 (4)	0.51711 (19)	0.6953 (4)	0.0428 (8)	
H2A	0.7392	0.4742	0.7538	0.051*	
H2B	0.8163	0.5281	0.6670	0.051*	
C1B	0.4976 (10)	0.6000 (5)	0.7595 (10)	0.050 (2)	0.62
H1B1	0.5278	0.6471	0.7144	0.060*	0.62
H1B2	0.4508	0.6149	0.8428	0.060*	0.62
C2B	0.6606 (13)	0.5528 (6)	0.8216 (9)	0.054 (2)	0.62
H2B1	0.7537	0.5856	0.8826	0.065*	0.62
H2B2	0.6376	0.5123	0.8872	0.065*	0.62
N3	0.4179 (4)	0.39852 (18)	0.5974 (4)	0.0421 (7)	
H3A	0.3418	0.3712	0.5234	0.051*	
H3B	0.5121	0.3683	0.6386	0.051*	
O1	-0.0021 (4)	0.63113 (18)	0.6513 (4)	0.0593 (8)	
H1	-0.0445	0.6570	0.7075	0.089*	
C3	0.2468 (6)	0.4976 (2)	0.6853 (6)	0.0512 (10)	
H3C	0.1373	0.4928	0.6044	0.061*	
H3D	0.2182	0.5146	0.7767	0.061*	
C4	0.3337 (7)	0.4194 (3)	0.7147 (6)	0.0579 (12)	
H4A	0.4214	0.4199	0.8135	0.069*	
H4B	0.2462	0.3806	0.7178	0.069*	
C5	0.2437 (6)	0.6200 (2)	0.5482 (5)	0.0510 (10)	
H5A	0.3185	0.6523	0.5056	0.061*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H5B	0.1593	0.5951	0.4629	0.061*
C6	0.1434 (6)	0.6724 (3)	0.6229 (6)	0.0540 (11)
Н6	0.2218	0.6902	0.7206	0.065*
C7	0.0782 (7)	0.7419 (3)	0.5227 (7)	0.0688 (14)
H7A	0.0052	0.7249	0.4251	0.103*
H7B	0.1769	0.7703	0.5091	0.103*
H7C	0.0109	0.7747	0.5702	0.103*
Cl1	0.87920 (13)	0.32829 (6)	0.91703 (10)	0.0455 (3)
O2	0.9702 (7)	0.2862 (3)	1.0475 (5)	0.0985 (15)
O3	0.9946 (5)	0.3676 (3)	0.8507 (5)	0.0966 (15)
O4	0.7661 (7)	0.3822 (3)	0.9591 (6)	0.1084 (16)
O5	0.7691 (8)	0.2780 (4)	0.8070 (6)	0.131 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0237 (3)	0.0276 (3)	0.0384 (4)	-0.0022 (2)	0.0081 (2)	0.0034 (2)
N1	0.0303 (15)	0.0401 (17)	0.0543 (19)	-0.0027 (13)	0.0160 (14)	-0.0064 (15)
C1A	0.064 (10)	0.089 (14)	0.112 (16)	-0.042 (10)	0.061 (11)	-0.066 (12)
C2A	0.031 (5)	0.052 (8)	0.041 (7)	-0.009 (6)	0.006 (5)	-0.013 (6)
N2	0.0310 (16)	0.0457 (18)	0.0488 (18)	0.0005 (13)	0.0066 (14)	0.0035 (14)
C1B	0.042 (4)	0.057 (5)	0.046 (4)	-0.008 (3)	0.003 (3)	-0.022 (4)
C2B	0.061 (5)	0.057 (5)	0.035 (4)	0.006 (4)	-0.002 (3)	-0.005 (4)
N3	0.0395 (17)	0.0314 (15)	0.0574 (19)	-0.0027 (13)	0.0167 (15)	0.0060 (14)
01	0.0466 (17)	0.0539 (18)	0.092 (2)	-0.0103 (14)	0.0423 (17)	-0.0096 (17)
C3	0.045 (2)	0.054 (2)	0.063 (3)	0.0052 (19)	0.030 (2)	0.013 (2)
C4	0.063 (3)	0.051 (2)	0.070 (3)	0.003 (2)	0.034 (2)	0.015 (2)
C5	0.056 (3)	0.043 (2)	0.061 (3)	0.0048 (19)	0.029 (2)	0.0029 (19)
C6	0.041 (2)	0.055 (3)	0.073 (3)	-0.004 (2)	0.026 (2)	-0.001 (2)
C7	0.067 (3)	0.051 (3)	0.100 (4)	0.013 (2)	0.043 (3)	0.009 (3)
Cl1	0.0399 (5)	0.0540 (6)	0.0414 (5)	0.0024 (4)	0.0095 (4)	0.0041 (4)
02	0.118 (4)	0.099 (3)	0.074 (2)	0.045 (3)	0.021 (3)	0.036 (2)
O3	0.069 (2)	0.147 (4)	0.079 (2)	-0.032 (3)	0.030 (2)	0.018 (3)
04	0.112 (4)	0.093 (3)	0.137 (4)	0.042 (3)	0.062 (3)	0.013 (3)
05	0.115 (4)	0.186 (5)	0.097 (3)	-0.078 (4)	0.039 (3)	-0.062 (4)

Geometric parameters (Å, °)

Ni1—N2 ⁱ	2.125 (3)	C2B—H2B2	0.9700
Ni1—N2	2.125 (3)	N3—C4	1.457 (6)
Ni1—N3	2.145 (3)	N3—H3A	0.9000
Ni1—N3 ⁱ	2.145 (3)	N3—H3B	0.9000
Ni1—N1 ⁱ	2.171 (3)	O1—C6	1.438 (5)
Ni1—N1	2.171 (3)	O1—H1	0.8200
N1—C3	1.480 (5)	C3—C4	1.502 (6)
N1—C1B	1.502 (7)	С3—Н3С	0.9700
N1—C5	1.511 (5)	C3—H3D	0.9700
N1—C1A	1.526 (14)	C4—H4A	0.9700

C1A—C2A	1.517 (13)	C4—H4B	0.9700
C1A—H1A1	0.9700	C5—C6	1.490 (6)
C1A—H1A2	0.9700	С5—Н5А	0.9700
C2A—N2	1.501 (11)	С5—Н5В	0.9700
C2A—H2A1	0.9700	C6—C7	1.507 (7)
C2A—H2A2	0.9700	С6—Н6	0.9800
N2—C2B	1.490 (9)	С7—Н7А	0.9600
N2—H2A	0.9000	С7—Н7В	0.9600
N2—H2B	0.9000	С7—Н7С	0.9600
C1B—C2B	1.494 (10)	Cl1—O3	1.405 (4)
C1B—H1B1	0.9700	Cl1—O2	1.406 (4)
C1B—H1B2	0.9700	Cl1—O4	1.417 (4)
C2B—H2B1	0.9700	Cl1—O5	1.423 (5)
N2 ⁱ —Ni1—N2	180.000 (1)	N1—C1B—H1B2	109.1
N2 ⁱ —Ni1—N3	87.91 (13)	H1B1—C1B—H1B2	107.8
N2—Ni1—N3	92.09 (13)	N2—C2B—C1B	110.7 (6)
N2 ⁱ —Ni1—N3 ⁱ	92.09 (13)	N2—C2B—H2B1	109.5
N2—Ni1—N3 ⁱ	87.91 (13)	C1B—C2B—H2B1	109.5
N3—Ni1—N3 ⁱ	180.00 (9)	N2—C2B—H2B2	109.5
N2 ⁱ —Ni1—N1 ⁱ	82.81 (13)	C1B—C2B—H2B2	109.5
N2—Ni1—N1 ⁱ	97.19 (13)	H2B1—C2B—H2B2	108.1
N3—Ni1—N1 ⁱ	98.31 (12)	C4—N3—Ni1	111.0 (2)
N3 ⁱ —Ni1—N1 ⁱ	81.69 (12)	C4—N3—H3A	109.4
N2 ⁱ —Ni1—N1	97.19 (13)	Ni1—N3—H3A	109.4
N2—Ni1—N1	82.81 (13)	C4—N3—H3B	109.4
N3—Ni1—N1	81.69 (12)	Ni1—N3—H3B	109.4
N3 ⁱ —Ni1—N1	98.31 (12)	H3A—N3—H3B	108.0
N1 ⁱ —Ni1—N1	180.000 (1)	С6—О1—Н1	109.5
C3—N1—C1B	121.3 (5)	N1—C3—C4	113.1 (4)
C3—N1—C5	110.0 (3)	N1—C3—H3C	109.0
C1B—N1—C5	104.6 (4)	С4—С3—Н3С	109.0
C3—N1—C1A	96.7 (6)	N1—C3—H3D	109.0
C1B—N1—C1A	26.6 (5)	C4—C3—H3D	109.0
C5—N1—C1A	126.8 (7)	H3C—C3—H3D	107.8
C3—N1—Ni1	107.1 (2)	N3—C4—C3	111.8 (4)
C1B—N1—Ni1	104.5 (4)	N3—C4—H4A	109.2
C5—N1—Ni1	108.7 (2)	С3—С4—Н4А	109.2
C1A—N1—Ni1	105.7 (6)	N3—C4—H4B	109.2
C2A—C1A—N1	109.9 (10)	C3—C4—H4B	109.2
C2A—C1A—H1A1	109.7	H4A—C4—H4B	107.9
N1—C1A—H1A1	109.7	C6—C5—N1	119.3 (4)
C2A—C1A—H1A2	109.7	C6—C5—H5A	107.5
N1—C1A—H1A2	109.7	N1—C5—H5A	107.5
HIAI—CIA—HIA2	108.2	C6—C5—H5B	107.5
N2—C2A—C1A	106.3 (10)	NI—C5—H5B	107.5
N2—C2A—H2A1	110.5	н5А—С5—Н5В	107.0

supplementary materials

C1A—C2A—H2A1	110.5	O1—C6—C5	109.9 (4)
N2—C2A—H2A2	110.5	O1—C6—C7	110.4 (4)
C1A—C2A—H2A2	110.5	C5—C6—C7	109.8 (4)
H2A1—C2A—H2A2	108.7	O1—C6—H6	108.9
C2B—N2—C2A	25.8 (4)	С5—С6—Н6	108.9
C2B—N2—Ni1	110.4 (4)	С7—С6—Н6	108.9
C2A—N2—Ni1	106.3 (5)	С6—С7—Н7А	109.5
C2B—N2—H2A	85.6	С6—С7—Н7В	109.5
C2A—N2—H2A	110.5	Н7А—С7—Н7В	109.5
Ni1—N2—H2A	110.5	С6—С7—Н7С	109.5
C2B—N2—H2B	127.8	H7A—C7—H7C	109.5
C2A—N2—H2B	110.5	H7B—C7—H7C	109.5
Ni1—N2—H2B	110.5	O3—Cl1—O2	112.0 (3)
H2A—N2—H2B	108.7	O3—Cl1—O4	109.8 (3)
C2B—C1B—N1	112.6 (7)	O2—Cl1—O4	108.7 (3)
C2B-C1B-H1B1	109.1	O3—Cl1—O5	109.5 (3)
N1-C1B-H1B1	109.1	O2—Cl1—O5	110.3 (4)
C2B—C1B—H1B2	109.1	O4—Cl1—O5	106.5 (4)

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A···O4	0.90	2.42	3.293 (6)	164
N2—H2A···O3	0.90	2.69	3.416 (6)	139
N2—H2B···O1 ⁱⁱ	0.90	2.31	3.067 (4)	141
O1—H1···O2 ⁱⁱⁱ	0.82	2.36	3.043 (6)	142

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) –*x*+1, –*y*+1, –*z*+2.

